The scientific effort to create affordable sodium-ion batteries as a potential substitute for lithium-based battery packs used in electric vehicles and energy storage is reminiscent of the intense research and development that fueled LFP batteries over the last decade.
Price and Performance of LFP Batteries
The phosphate batteries, which avoid the costly nickel and cobalt, have gradually seen a decrease in price. This has led to the emergence of portable power stations, such as the Anker SOLIX, which are available for under a thousand dollars on Amazon. Additionally, these batteries have shown improvements in energy density and charging capabilities in cold conditions. As a result, LFP batteries are becoming the preferred choice for mass-produced electric vehicles and energy storage solutions.
Advancements in Sodium-Ion Technology
A similar trend is unfolding with sodium-ion batteries. Sodium is around 50 times cheaper than lithium and is so plentiful that it can be extracted from seawater. After more than ten years of research aimed at developing a practical sodium-ion battery, the first electric vehicles and large-scale energy storage systems are starting to appear. Major battery manufacturers, CATL and BYD, are focusing more on sodium-ion production, even with the significant decline in lithium prices recently.
Improving Energy Density
One of the main drawbacks of sodium-ion batteries has been their energy density, which is gradually improving as more research from labs transitions into production. A recent breakthrough involves a sodium vanadium phosphate compound (NaxV2(PO4)3) developed by scientists from the University of Houston and various French universities, moving from theory to practical use.
This new vanadium phosphate material enhances the theoretical energy density from the current average of 396 Wh/kg to 458 Wh/kg, which brings it closer to lithium-ion batteries. Moreover, the incorporation of vanadium helps maintain stability during quick charging and discharging cycles while providing a higher voltage of 3.7V compared to the conventional cells currently in use.
Implications for Future Developments
Researchers highlight that "the continuous voltage change is a key feature" since it improves the battery's energy efficiency without compromising the stability of the electrodes. The team even refers to this advancement as "a game-changer" for the future of sodium-ion battery technology and suggests that their specialized process could potentially apply to other electrode materials as well.
Source: Link